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Compound viscous jets composed of an inner core of one fluid surrounded by an
annulus of another are studied here using long-wave theory. We investigate the limit
of strongly differing viscosities in the neighbouring fluids: either a highly viscous
core or annulus. Additionally, if inertia is present, the density ratio of the fluids is
assumed to mirror that of the viscosities. The resulting asymptotic theory reduces
to several earlier theories in the appropriate limits. Linear stability analysis and full
numerical simulations of the one-dimensional set of equations allow an exploration of
the dynamics of either the interior or exterior fluid. The results of our linear stability
analysis demonstrate that, for both cases, a stretching and a squeezing mode exist,
with the former being more dominant than the latter. Our numerical simulations show
that in the highly viscous core case, the interfaces can move out-of-phase, leading to
the breakup of the annular region; this is contrary to the linear theory predictions.
In the highly viscous annulus case, our results demonstrate the possibility of breakup
of either the core or the annulus, depending on the initial ratio of the radii.

1. Introduction
Compound jets and threads composed of a core liquid surrounded by an annular

layer of another immiscible liquid (see figure 1) form an important class of flows par-
ticularly in areas that involve particle sorting, fibre-spinning, micro-encapsulation in
foods, drug delivery, ink-jet printing, and materials science applications (Herzenberg &
Sweet 1976; Denn 1980; Hertz & Hermanrud 1983; Mathiowitz et al. 1997; Hardas
et al. 2000; Jung et al. 2000; Burlak et al. 2001; Lee et al. 2001). These compound
threads that feature an inner and an outer interface (if the annular layer is bounded
by, say, an inviscid gas) are susceptible to a surface tension-induced instability, that
ultimately leads to their breakup into drops of varying sizes.

The subject of single-jet breakup has received considerable attention in the literature
starting with the early theoretical work of Lord Rayleigh (1878), who showed, using
a temporal stability analysis for an inviscid doubly infinite jet, that perturbations of
wavelength larger than the undisturbed jet circumference grow and lead to breakup
into droplets – linear theory provides theoretical predictions which are in surprisingly
good agreement with experiments (for a recent experimental study see Chauhan et al.
(2003) and references therein). The effect of viscosity and a surrounding viscous phase
was introduced by Tomotika (1934) and Chandrasekhar (1961), and a considerable
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Figure 1. Schematic representation of a compound thread.

body of work has developed regarding the linear stability of capillary jet flows (see
reviews by Denn 1980; Eggers 1997; Lin & Reitz 1998). Viscosity does not change
the qualitative features of the instability, but merely reduces maximum growth rates
and elongates the length of the most unstable waves.

The temporal stability model assumes an initial condition and solves for the large-
time behaviour of the system. Since disturbances are usually introduced at the jet
nozzle and are maintained throughout an experiment (or in applications through
natural vibrations of the nozzle, for example), it was suggested by Keller, Rubinow &
Tu (1973) that a spatial stability allowing growth of disturbances with axial position,
may be more appropriate and indeed find spatial instability if the Weber number (the
ratio of inertial to capillary pressure) is above a threshold value. This problem was
analysed further by Leib & Goldstein (1986a, b) who find absolute instability below
a threshold Weber number.

The nonlinear stability of single jets has received much attention starting with the
work of Lee (1974), who used a one-dimensional model to predict inviscid capillary
jet breakup; see also Schulkes (1993a, b) for a more modern treatment. The success
of one-dimensional models in describing breakup of viscous jets, has emerged from
several investigations including those of Eggers & Dupont (1994), Eggers (1995, 1997)
and Papageorgiou (1995a, b). The approach is to analyse simpler models and predict
singular structures by constructing local similarity solutions. Of particular interest
are experimental verifications of the highly viscous (Stokes) theory of Papageorgiou
(1995a, b) by McKinley & Tripathi (2000) and Rothert, Richter & Rehberg (2003)
who also consider the viscous–inertial regime of Eggers (see also the studies of
Brenner, Shi & Nagel 1994; Shi, Brenner & Nagel 1994; Lister & Stone 1998; Wilkes,
Phillips & Basaran 1999; Notz, Chen & Basaran 2001; Chen, Notz & Basaran 2002).

An important issue is how well these one-dimensional models compare both
with experiments and full numerical simulations of the Navier–Stokes equations,
particularly as some overturning of the interface occurs (Wilkes et al. 1999) for a
drop falling under gravity. Ambravaneswaran, Wilkes & Basaran (2002) carefully
compare and extend the models showing that the one-dimensional models perform
adequately. Indeed, one motivation for the current long-wave theory is to build a
more general model that encompasses the high-viscosity contrasts sometimes seen in
experiments (see Doshi et al. 2003).

In contrast to the single-fluid jet, compound jets have received less attention. One
of the first studies was the experimental work of Hertz & Hermanrud (1983) who
demonstrated the feasibility of compound drop formation with applications in ink-jet
technologies. Sanz & Meseguer (1985) and Radev & Shkadov (1985) considered the
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linear stability of inviscid compound jets based on one-dimensional approximations,
and viscosity was included in the linear stability by Radev & Tchavdarov (1988) and
Shkadov & Sisoev (1996) (also in a one-dimensional approximation). It is established
in these studies that there are two unstable modes present: a stretching mode where
the two interfaces grow in-phase, and a squeezing mode with the interfaces growing
exactly out-of-phase. The former instability sets the conditions for possible breakup
of the inner thread first followed by the outer interface (leading to encapsulation),
while the latter can produce breakup of the annular layer first and thus de-wetting of
the central core fluid. (In the present study, we present nonlinear solutions based on
one-dimensional models that capture both phenomena.) The linear studies find that
the stretching mode is the dominant one; viscosity does not qualitatively change these
results. The spatial stability of an inviscid compound jet was carried out by Chauhan
et al. (1996) who find two spatially unstable modes; they also extended the large
Weber number asymptotic analysis of Keller et al. (1973), to a compound jet. A more
complete stability study of the viscous compound jet was performed by Chauhan
et al. (2000) who considered a whole range of parameter values (e.g. viscosity, density,
surface tension and inner to outer radii ratios) and found that the stretching mode
retains its dominance, at least throughout the linear regime. A physical interpretation
of this is that the stretching mode releases energy from both interfaces, whereas the
squeezing mode only releases energy from one and thus grows more slowly.

The effect of surfactants on the stability of single and compound threads has
been considered by Ambravaneswaran & Basaran (1999), Hansen, Peters & Meijer
(1999), Kwak & Pozrikidis (2001), Timmermans & Lister (2002) and Craster, Matar
& Papageorgiou (2002). The latter study involved the derivation of a coupled set of
evolution equations for the interfacial location, the surfactant concentration and the
axial velocity component using long-wave theory. In that work, it was shown that
although the presence of surfactant does not alter the behaviour near pinching from
the similarity solution of Eggers (1993), it does rigidify the interface, leading to the
formation of smaller satellite drops. This is because the surfactant lowers the mean
value of the surface tension and gradients in surfactant concentration give rise to
Marangoni stresses, which counteract the surface-tension-induced breakup.

Craster, Matar & Papageorgiou (2003) (hereinafter referred to as paper I) then
extended this long-wave theory to cover surfactant-laden compound threads featuring
fluids of comparable viscosity. One feature that emerges from the long-wave theory
is that the axial velocity field is independent of the radial coordinate, and hence is
common to both fluids. This leads to the synchronization of the two fluid interfaces
and we can deduce a rescaling that, in most cases, reduces the two-fluid system to
an effective single-fluid thread, which has been extensively studied. The aim of the
present paper is to move beyond this situation and consider viscosity differences
that are more pronounced, leading to a radially dependent axial velocity component
(Henson, Cao & Bechtel 1998). This, then, permits the breakup of either the inner or
outer phase depending on the magnitude of the relevant system parameters. Thus this
asymptotic theory can capture more realistic and varied dynamics than that presented
in paper I. Note that surfactant effects will not be considered here.

There are two different situations to consider: a highly viscous fluid core surrounded
by a much less viscous fluid annulus and a highly viscous annulus surrounding a much
less viscous core. We also assume that the ratio of fluid densities is the same as that
of the viscosities. This is done primarily to ensure that our derived equations reduce
to other equations that describe the evolution of threads and jets in the literature,
although we acknowledge the difficulty of finding a pair of fluids such that the more
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viscous fluid is also the denser of the two. Long-wave theory will be used in order
to derive the relevant set of evolution equations by exploiting the viscosity ratio in
each case; this will serve as the parameter allowing the construction of an asymptotic
theory featuring a radially dependent axial velocity. The stability of the threads is
then considered in both the linear and nonlinear regimes, and predictions regarding
the likelihood of breakup of the inner and outer phases will be made as a function
of system parameters by using accurate computations.

The rest of this paper is organized as follows: We give a detailed formulation of
the highly viscous core and annulus cases, followed by sections on linear theory and
numerical simulations of the nonlinear evolution equations. Concluding remarks are
given in § 5.

2. Problem formulation
Here, we present details of the derivation of the coupled sets of partial differential

equations governing the evolution of the threads. We consider the highly viscous core
first, followed by that of a highly viscous annulus.

2.1. Highly viscous core

We construct a theory for the evolution of an axisymmetric compound jet comprising
a highly viscous core, of radius r = S2(z, t), surrounded by a much less viscous
annulus of radius r = S1(z, t) (see figure 1). The subscripts ‘1’ and ‘2’ are hereinafter
used to denote properties associated with these two radii, and to distinguish the outer
and inner fluids, respectively.

The annular (core) fluid has viscosity µ1 (µ2) and density ρ1 (ρ2) with the interfaces
at r = S1 (S2) having constant surface tensions σ1 (σ2). These fluids are considered to
be Newtonian and incompressible and µ1 � µ2. The compound thread is surrounded
by air, which is taken to be inviscid. We use a cylindrical coordinate system (r, θ, z),
with corresponding velocity field (u, 0, w), to describe the dynamics of the annular
region, S2(z, t) � r � S1(z, t), and of the core region, 0 � r � S2(z, t). The governing
equations are the usual Navier–Stokes equations and mass conservation in each fluid
region. These are coupled by stress and velocity conditions.

We begin by non-dimensionalizing using the initial radius of the core region, R, as
the characteristic dimension of r , and L as a characteristic horizontal length scale;
the aspect ratio ε = R/L plays an important role as it provides the small parameter
that is used in the analysis. Furthermore, we measure the speed u by V = σ2/µ2,
w by Lσ2/Rµ2, time by R/V and the pressures pi by σ2/R. The non-dimensional
governing equations in the annular region are then expressed by:

l Re
(
u1t

+ u1u1r
+ w1u1z

)
= −p1r

+ m

(
1

r
[ru1r

]r − u1

r2
+ ε2u1zz

)
, (2.1)

l Re
(
w1t

+ u1w1r
+ w1w1z

)
= −ε2p1z

+ m

(
1

r
[rw1r

]r + ε2w1zz

)
, (2.2)

1

r
(ru1)r + w1z

= 0. (2.3)

Here, viscosity and density ratios emerge, given by m ≡ µ1/µ2 and l ≡ ρ1/ρ2,
respectively, in addition to a Reynolds number, Re ≡ ρ2VR/µ2.
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In the core region, we have

Re
(
u2t

+ u2u2r
+ w2u2z

)
= −p2r

+

(
1

r
[ru2r

]r − u2

r2
+ ε2u2zz

)
, (2.4)

Re
(
w2t

+ u2w2r
+ w2w2z

)
= −ε2p2z

+

(
1

r
[rw2r

]r + ε2w2zz

)
, (2.5)

1

r
(ru2)r + w2z

= 0. (2.6)

The normal and shear stress balances at the outer interface, r = S1, are given by

p1 − 2m

1 + ε2S2
1z

(
u1r

− S1z

[
ε2u1z

+ w1r

]
+ ε2S2

1z
w1z

)
= γ

(
1

S1

− ε2S1zz

)
, (2.7)

m
[(

1 − ε2S2
1z

) (
w1r

+ ε2u1z

)
+ 2ε2S1z

(
u1r

− w1z

)]
= 0. (2.8)

We note (this is adopted in the remainder of the paper also) that the full curvature
term on the right-hand side of (2.7) is given by (1 + ε2S2

1z
)1/2/S1 − ε2S1zz

/(1 + ε2S2
1z
)1/2,

and for simplicity we model this with order ε2 accuracy. This provides an appropriate
regularization of high wavenumbers which is useful in the computations, without
affecting singularity structures. (For a comparative study of different models in inviscid
flows where the approximation of the curvature term can matter, see Papageorgiou &
Orellana (1998); see also Ambaravaneswaran et al. (2002) for a comparison of the
predictions of one- and two-dimensional models.)

The parameter γ that emerges is a ratio of surface tensions, γ = σ1/σ2. At the
inner interface, r = S2, the equivalent balances are given by

p2 − 2(
1 + ε2S2

2z

) (
ε2S2

2z
w2z

− S2z

(
ε2u2z

+ w2r

)
+ u2r

)

−
(

p1 − 2m(
1 + ε2S2

2z

) (
ε2S2

2z
w1z

− S2z

(
ε2u1z

+ w1r

)
+ u1r

))
=

(
1

S2

− ε2S2zz

)
, (2.9)

[(
1 − ε2S2

2z

) (
ε2u2z

+ w2r

)
+ 2ε2S2z

(
u2r

− w2z

)]
− m

[(
1 − ε2S2

2z

) (
ε2u1z

+ w1r

)
+ 2ε2S2z

(
u1r

− w1z

)]
= 0. (2.10)

Additionally, there are kinematic boundary conditions for the interface positions
S1, S2 given by

Sit + wiSiz = ui (i = 1, 2). (2.11)

2.1.1. Asymptotic reduction

We perform an asymptotic reduction of this set of equations in the limit of small
ε, which corresponds to long and thin threads. Here, the aim is to capture the
essential physics within a simpler set of equations. Furthermore, to model high-
viscosity contrasts, we set the viscosity and density ratios to m = ε2M and l = ε2L.
This choice for the density ratio has the effect of explicitly removing L from the
subsequent theory, and we are therefore additionally assuming that the highly viscous
fluid is more dense than the less viscous one. The density ratio can be further relaxed
to l = εL; the role of this density choice is to ensure that the inertial term in the
axial component of the Navier–Stokes equations for the less viscous fluid does not
enter at leading order, thereby enabling analytical progress to be made. This allows
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us to retain inertial contributions in the more viscous of the two fluids in the final
equations which, as will be shown below, allows us to recover other equations in the
literature from our equations by taking appropriate limits. Note that an alternative
approach would have involved the solution of the Stokes flow problem in both fluids.
This would have obviated the need to make assumptions regarding the magnitude
of l.

We also rescale the Reynolds number such that Re = ε2Re; this scaling for the
Reynolds number is usually adopted for viscous threads and jets and ensures that
inertia enters also to leading order (Craster et al. 2002). We note that γ = O(1) and
that the scaling m ∼ ε2 provides the canonical asymptotic limit for which a radial
dependence is seen in the leading-order axial velocity (see below); this is a new feature
compared to the m = O(1) case analysed in paper I where a plug flow is obtained
for the leading-order axial velocity throughout the compound jet. We introduce the
expansions w1 = w

(1)
1 + ε2w

(2)
1 + . . . , with similar expressions for the other dependent

variables (the expansion proceeds in powers of ε2 owing to its natural occurrence
in all the governing equations and boundary conditions) and drop the superscripts
‘1’ from the leading-order equations to obtain the following leading-order radial and
axial components of the Navier–Stokes equations in the annular region:

p1r
= 0, p1z

=
M

r

(
rw1r

)
r
, (2.12)

whence, p1 = p1(z, t) only (to be given by the normal stress balance at r = S1) and
the leading-order axial velocity component in this region is

w1 =
1

M

(
p1z

r2

4
− c1(z, t) ln r − c2(z, t)

)
. (2.13)

Using the continuity equation we determine the leading-order radial velocity com-
ponent in this region to be:

u1 = − 1

M

(
p1zz

r3

16
− r

2
c2z

− c1z

r

2
ln r + c1z

r

4

)
+

c3(z, t)

r
. (2.14)

Here ci(z, t) for i = 1, . . . , 3 are, at present, unknown functions and we now analyse
the governing equations further in order to deduce them.

The leading-order normal stress balance at r = S1 yields the pressure distribution
in the annular region:

p1 = γ κ1, (2.15)

in which the curvature, κ1, is given by

κ1 =
1

S1

− ε2S1zz
. (2.16)

Note that we have retained a seemingly ad hoc correction to the curvature of O(ε2)
that acts to introduce a high wavenumber cutoff and aids numerical computations.

Substitution of (2.13) into the leading-order shear stress balance at r = S1, given by

w1r
= 0, (2.17)

yields an expression for c1(z, t):

c1(z, t) = 1
2
S2

1p1z
. (2.18)
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The leading-order axial component of the Navier–Stokes equations in the core is

1

r

(
rw2r

)
r
= 0. (2.19)

Recalling that we require boundedness at r = 0, the leading-order axial velocity in the
core is then given by w2 ≡ w2(z, t). Thus the leading-order axial velocity component
in the core is independent of the radial coordinate much as in the conventional
single-fluid jet analysis (Papageorgiou 1995a, b).

Using continuity, the leading-order radial velocity component in the core is deter-
mined to be

u2 = −w2z

r

2
. (2.20)

Substitution of (2.20) into the leading-order radial component of the Navier–Stokes
equations in the core region yields p2r

= 0, implying that p2 ≡ p2(z, t) and it is given
by the leading-order normal stress balance in this region:

p2 = p1 − w2z
+ κ2 = γ

(
1

S1

− ε2S1zz

)
+

(
1

S2

− ε2S2zz

)
− w2z

. (2.21)

The leading-order shear stress balance in this region is w2r
= 0, which is already

satisfied.
Demanding continuity of the axial and radial velocity components at r = S2 yields

c2(z, t) = p1z

S2
2

4
− c1 ln S2 − Mw2, (2.22)

and

c3(z, t) = −w2z

2
S2

2 +
1

M

(
p1zz

S4
2

16
− S2

2

2
c2z

+ c1z

S2
2

2

(
1
2

− ln S2

))
. (2.23)

Thus, at this stage, only w2 must be determined in order to derive the leading-order
equations.

To make further progress we examine the second-order axial component of the
Navier–Stokes equations in the core region:

Re(w2t
+ w2w2z

) = −p2z
+

[
1

r

(
rw

(2)
2r

)
r
+ w2zz

]
, (2.24)

in which w
(2)
2 represents the second-order contribution to the axial velocity component

in the core. Integration of this equation, and using boundedness at r = 0, yields

w
(2)
2r

= 1
2
r
[
Re

(
w2t

+ w2w2z

)
+ p2z

− w2zz

]
. (2.25)

Substitution of (2.25) into the second-order shear stress balance at r = S2, which is
given by

w
(2)
2r

+ u2z
+ 2S2z

(u2r
− w2z

) − Mw1r
= 0, (2.26)

yields the following evolution equation for w2(z, t):

Re
(
w2t

+ w2w2z

)
=

3

S2
2

(
S2

2w2z

)
z

− (κ2)z − γ

(
S1

S2

)2

(κ1)z . (2.27)

Together with evolution equations for S2 and S1, that are the kinematic conditions
at the interfaces,

S2t
+ w2S2z

+
S2

2
w2z

= 0, (2.28)

S1t
+ w1(S1, z, t)S1z

= u1(S1, z, t), (2.29)
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we now have a closed system of evolution equations for the thread dynamics. The
functions w1(S1, z, t), u1(S1, z, t) and w1z

(S1, z, t) are given by (2.13), (2.14), (2.18),
(2.22) and (2.23). Note that the dependence of (2.27)–(2.29) upon the Reynolds
number can be removed via the rescaling

Si → ReSi, ()t → 1

Re
()t , wi → wi/Re. (2.30)

The governing system (2.27)–(2.29) conserves momentum and mass, as we briefly
outline next. Using the leading-order curvatures κ1 = 1/S1 and κ2 = 1/S2, we multiply
equation (2.27) by S2

2/2, and (2.28) by ReS2w2 and add to obtain(
S2

2w2

)
t
+

(
S2

2w
2
2

)
z
= Fz, (2.31)

where F is a known function we need not give here. It follows that
∫

S2
2w2 dz is

a conserved quantity and is proportional to the total momentum of region 2. (For
definiteness we consider periodic domains as is done in the simulations that follow.)

Mass conservation in region 2 follows trivially by multiplication of (2.28) by S2. To
derive an analogous result for region 1, multiply (2.29) by S1 to obtain(

S2
1

)
t
+ 2

(
S1S1z

w1 − S1u1

)
= 0. (2.32)

It is enough to show that S1S1z
w1 − S1u1 can be written as Gz for some function G, in

which case mass conservation follows by integration and periodicity. To achieve this
we use the definitions of w1(S1, z, t) and u1(S1, z, t) using (2.13) and (2.14) and write
c3(z, t) in terms of c1 and c2 according to (2.23). After some algebra, we find

S1S1z
w1 − S1u1 =

1

8M

(
p1z

S4
2

)
z

− 1

2M

(
c2S

2
1

)
z

− 1

2M

[
c1

(
S2

1 ln S1 − 1
2
S2

1

)]
z

− 1

4M

(
c1S

2
2

)
z
, (2.33)

and since the right-hand side is the derivative of a periodic function the required
result follows.

2.1.2. Connections with previous models

In the limit M → ∞, c1 = c3 = 0 and c2 = −Mw2, whence u1 = −rw2z
/2 and

w1 = w2 = w. Thus the evolution equations become

wt + wwz =
3

S2
2

(
S2

2wz

)
z

− (κ2)z − γ

(
S1

S2

)2

(κ1)z, (2.34)

Sit + wSiz + 1
2
Siwz = 0 (i = 1, 2). (2.35)

This is the system of equations studied in paper I which involved liquids of comparable
viscosities and densities. Note that setting γ = 0 renders the outer fluid passive and
S2 = S recovers the single jet equations studied by Eggers (1993).

Another limit is that of a very thin viscous film exterior to a rigid fibre; the equation
derived by Hammond (1983) in his study of annular viscous films on the inside of
cylindrical pipes can also be derived from (2.27), (2.28) and (2.29). It is notable that
Hammond’s work involves flow on the interior of a circular cylinder and as such it is
at first glance more akin to the highly viscous annulus we consider next. However, as
noted by, for instance, Kalliadasis & Chang (1994), Hammond’s equation (2.39) holds
in the limit of a very thin annular film on the outside of a fibre; here the interior core
has become so viscous that it is, in this limit, effectively rigid.
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To recover Hammond’s equation, we set M � 1 to obtain S2 ∼ 1, w2 ∼ 0 and
define the film thickness between S1 and S2, h, to be

h =
S1 − 1

δS1

, (2.36)

where δ � 1. This reflects the physical situation in the work of Hammond (1983),
wherein the film thickness is much smaller than the pipe radius and the viscosity of
the film far exceeds that of the core fluid. In this case, u1 and w1 evaluated at S1 are
given by

u1 ≈ δ3

6M

(
3h2hzp1z

+ 2h3p1zz

)
, (2.37)

w1 ≈ − δ2

2M
h2p1z

, (2.38)

in which p1z
= −γ δ(hz + ε2hzzz) and p1zz

= −γ δ(hzz + ε2hzzzz). Substitution of u1, w1,
p1z

and p1zz
into (2.29), with M = δ3, together with the rescaling t = t̂/γ yields the

following equation for h

ht̂ = − 1
3
(h3(hz + ε2hzzz))z. (2.39)

This is in agreement with (3.44) in the work of Hammond (1983) if we further set
ε = 1. Notably, the choice of scalings and small parameters alter slightly between
the articles justifying the choice ε = 1, because δ � ε is a small parameter that
measures the amplitude of the annular interface; the length of the waves scales
with the undisturbed core radius (the pipe radius in Hammond’s case) and is long
compared to the interfacial deflection.

We were not able to recover the equations of Lister & Stone (1998) as a limiting form
of our evolution equations. In our notation, Lister & Stone (1998) have m = ε2 ln(1/ε),
and hence this limit can be approached by considering M → ∞ and S1 � S2. As shown
already, the limit M → ∞ captures the order one viscosity ratio system of paper I, and
misses the intermediate case of large but asymptotically smaller M that is necessary
for the Lister & Stone (1998) model. Another observation is that the tangential stress
balance equation (2.27), at zero Reynolds number, is missing the external drag term
on the thread owing to the surrounding medium that forms a central feature of the
Lister & Stone (1998) model, and so the present model cannot tend to those limiting
forms. It may be possible to achieve this by considering different asymptotic scales
for m as was done by Lister & Stone (1998), but this is not pursued further here.

2.2. Highly viscous annulus

Here we consider the opposite limit whereby we have a highly viscous annulus of
fluid surrounding a much less viscous core. In this case, we non-dimensionalize using
the more viscous fluid: V = σ2/µ1. We also redefine the Reynolds number so that it
is scaled upon µ1: Re1 = ρ1VR/µ1. The non-dimensional governing equations in the
annular region are then given by

Re1

(
u1t

+ u1u1r
+ w1u1z

)
= −p1r

+

(
1

r
[ru1r

]r − u1

r2
+ ε2u1zz

)
, (2.40)

Re1

(
w1t

+ u1w1r
+ w1w1z

)
= −ε2p1z

+

(
1

r
[rw1r

]r + ε2w1zz

)
, (2.41)

1

r
(ru1)r + w1z

= 0. (2.42)
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In the core region, we have

m

l
Re1

(
u2t

+ u2u2r
+ w2u2z

)
= −mp2r

+

(
1

r
[ru2r

]r − u2

r2
+ ε2u2zz

)
, (2.43)

m

l
Re1

(
w2t

+ u2w2r
+ w2w2z

)
= −ε2mp2z

+

(
1

r
[rw2r

]r + ε2w2zz

)
, (2.44)

1

r
(ru2)r + w2z

= 0. (2.45)

The normal and shear stress balances at r = S1 are, respectively, given by

p1 − 2

1 + ε2S2
1z

(
u1r

− S1z

[
ε2u1z

+ w1r

]
+ ε2S2

1z
w1z

)
= γ

(
1

S1

− ε2S1zz

)
, (2.46)

(
1 − ε2S2

1z

) (
w1r

+ ε2u1z

)
+ 2ε2S1z

(
u1r

− w1z

)
= 0. (2.47)

The equivalent balances at r = S2 are given by

p2 − 2

m
(
1 + ε2S2

2z

) (
ε2S2

2z
w2z

− S2z

(
ε2u2z

+ w2r

)
+ u2r

)

−
(

p1 − 2(
1 + ε2S2

2z

) (
ε2S2

2z
w1z

− S2z

(
ε2u1z

+ w1r

)
+ u1r

))
=

(
1

S2

− ε2S2zz

)
, (2.48)

[(
1 − ε2S2

2z

) (
ε2u2z

+ w2r

)
+ 2ε2S2z

(
u2r

− w2z

)]
− m

[(
1 − ε2S2

2z

) (
ε2u1z

+ w1r

)
+ 2ε2S2z

(
u1r

− w1z

)]
= 0. (2.49)

2.2.1. Asymptotic reduction

We consider the distinguished limits m = M/ε2, l = L/ε2 and Re = ε2Re in the
above equations. This canonical limit is chosen to retain inertia in the leading-order
equations. Once again, the comments made in § 2.1.1 regarding the magnitude of the
density ratio are equally applicable to this case. The Stokes limit and the way it can be
achieved asymptotically is discussed at the end of this section. From the leading-order
axial component of the Navier–Stokes equations in the annular region and the shear
stress balance at r = S1, which are, respectively, given by

1

r
[rw1r

]r = 0, w1r
= 0, (2.50)

we find that the leading-order annular axial velocity w1 ≡ w1(z, t), that is, it is
independent of the radial coordinate. Substitution of this result into the leading-order
normal stress balance at r = S1 and the continuity equation yields the following

p1 = γ

(
1

S1

− ε2S1zz

)
+ 2u1r

(S1, z, t), u1 = −w1z

r

2
+

a1(z, t)

r
. (2.51)

From the leading-order axial component of the Navier–Stokes equations in the
core given by

Mp2z
=

1

r
[rw2r

]r , (2.52)

and using the fact that p1r
= 0 to leading order from the radial momentum equation,

we obtain

w2 = 1
4
Mr2p2z

− a2(z, t). (2.53)
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Substitution of w2 into the continuity equation yields

u2 = −
(

M
r3

16
p2zz

− r

2
a2z

)
; (2.54)

where we have used boundedness at r = 0. From the leading-order normal stress
balance at r = S2, we obtain

p2 = p1 +

(
1

S2

− ε2S2zz

)
− 2u1r

(S2, z, t). (2.55)

Demanding continuity of axial and radial velocities at r = S2 leads to

a2(z, t) = M
S2

2

4
p2z

− w1, (2.56)

a1(z, t) = − 1
16

MS4
2p2zz

+ 1
2
S2

2a2z
+ 1

2
S2

2w1z

= −
(

1
16

MS4
2p2zz

− 1
2
S2

2

(
1
4
M

(
S2

2p2z

)
z

− w1z

))
+ 1

2
S2

2w1z
. (2.57)

In order to generate an evolution equation for w1 we consider the second-order
axial component of the Navier–Stokes equations in the annular region:

Re
(
w1t

+ w1w1z

)
= −p1z

+

(
w1zz

+
1

r

[
rw

(2)
1r

]
r

)
, (2.58)

in which w
(2)
1 represents the second-order contribution to the axial velocity component

in the annular region. Integration of this equation yields

1
2
r
(
Re

(
w1t

+ w1w1z

)
+

(
p1z

− w1zz

))
= w

(2)
1r

+
a3(z, t)

r
. (2.59)

Substitution of w
(2)
1r

into the second-order shear stress balance at r = S1, given by

w
(2)
1r

+ u1z
+ 2S1z

(
u1r

− w1z

)
= 0, (2.60)

yields an equation for a3(z, t):

a3(z, t) = 1
2
S2

1

(
Re

(
w1t

+ w1w1z

)
+

(
p1z

− w1zz

))
− 1

2
S2

1w1zz
+ a1z

− 2
S1z

S1

a1 − 3S1S1z
w1z

. (2.61)

Another equation for a3(z, t) can be obtained by substituting w
(2)
1r

into the second-
order shear stress balance at r = S2, given by

1

M
w2r

−
(
u1z

+ 2S2z

(
u1r

− w1z

))
= w

(2)
1r

; (2.62)

this, then, yields

a3(z, t) = 1
2
S2

2

(
Re

(
w1t

+ w1w1z

)
+

(
p1z

− w1zz

))
− S2

M
w2r

(S2, z, t) + S2

(
u1z

+ 2S2z

(
u1r

− w1z

))
(S2, z, t). (2.63)

By equating (2.61) and (2.63), an evolution equation for w1 is obtained:(
Re

(
w1t

+ w1w1z

)
+ p1z

− w1zz

)
1
2

(
S2

1 − S2
2

)
− 1

2

(
S2

1 − S2
2

)
w1zz

− 3
2

(
S2

1 − S2
2

)
z
w1z

− 1
2
S2

2p2z
− 2

(
S1z

S1

− S2z

S2

)
a1 = 0, (2.64)

where κ1 is given by (2.16).
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Substitution of (2.51) into (2.55) yields

p2 = γ κ1 + κ2 + 2a1

(
1

S2
2

− 1

S2
1

)
, (2.65)

from which a1 can be eliminated:

a1(z, t) = S2
1S

2
2

[p2 − (γ κ1 + κ2)]

2
(
S2

1 − S2
2

) . (2.66)

Elimination of p1 and a1 from (2.64) yields

Re
(
w1t

+ w1w1z

) (
S2

1 − S2
2

)
− 3

[(
S2

1 − S2
2

)
w1z

]
z
+ γ S2

1 (κ1)z + S2
2 (κ2)z = 0. (2.67)

An equation for p2 is obtained by equating (2.57) and (2.66):

p2 − (γ κ1 + κ2) + 1
8
M

[
1 −

(
S2

S1

)2
] [

S2
2p2zz

− 2
(
S2

2p2z

)
z

]
= 0. (2.68)

Equation (2.68) provides the leading-order pressure in the core and couples into the
following evolution equations for S1, and S2:

S1t
+ w1S1z

+ 1
2
S1w1z

= 0, (2.69)

S2t
+ w1S2z

+ 1
2
S2w1z

= 1
16

M
(
S4

2p2z

)
z

1

S2

. (2.70)

It is easy to see that (2.69)–(2.70) conserve the integrals of S2
1 and S2

2 , respectively,
which physically corresponds to mass conservation. Before we consider the linear
stability of the system, we discuss the Stokes limit.

The distinguished limits m ∼ ε−2, l ∼ ε−2, Re1 ∼ ε2, were chosen to provide inertia
in the leading-order evolution. Inertia enters through the second-order contribution
to the axial velocity in the z-momentum equation (2.2). It can be seen, therefore, that
if

Re1 � m

l
Re1 ∼ Re1

ε2l
, (2.71)

holds, then inertia is unimportant in the annulus at second order. If we also have
Re1/l � 1, then the asymptotic balances in the core region remain valid to the
order carried out (this last inequality essentially permits the balance of viscous terms
with the axial pressure gradient in the core, to leading order, with the solution
(2.53) emerging). It is worth noting that this limit is valid for l = O(1) also. The
resulting evolution equations in the Stokes limit are (2.67), (2.68) and (2.69)–(2.70),
with Re1 ≡ 0. We note further that in the case where κ1 and κ2 consist of ε0 terms
alone, (2.67) can be integrated in z to give

3
(
S2

1 − S2
2

)
w1z

+ γ S1 + S2 = f (t), (2.72)

where f (t) corresponds to the quasi one-dimensional force in the jet (see Renardy
1994; Papageorgiou 1995a, b). We will not study the Stokes problem further in this
work. Once again, we can remove the Reynolds number explicitly from the equations
by performing the rescaling in (2.30) (using Re1) supplemented with

p2 → p2/Re1, M → M/Re
2

1.
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2.2.2. Connections with previous models

We can establish connections between (2.67), (2.68), (2.69) and (2.70) and other
models in the literature. In the limit M → 0, the equations studied in paper I are
again recovered. The lubrication equations governing the dynamics of a thin core
surrounded by a much more viscous liquid of infinite extent, which was studied by
Sierou & Lister (2003) can also be recovered. To this end, we set ε = 0 and take
S1 � S2 in (2.72), which yields w1z

≈ 0. Since w1 → 0 as r → ∞, w1 = 0. As a result,
(2.70) becomes

S2S2t
≈ 1

16
M

(
S4

2p2z

)
z
. (2.73)

Taking S1 � S2 in (2.68) yields

p2 ≈ 1

S2

+ 1
8
M

(
2
(
S2

2p2z

)
z

− S2
2p2zz

)
, (2.74)

which, using (2.73) yields

p2 ≈ 1

S2

+ 2
S2t

S2

. (2.75)

Equations (2.73) and (2.75) are the dimensionless analogues of (4.3) and (4.5) in the
work of Sierou & Lister (2003).

3. Linear theory
We now conduct a linear stability analysis of the equations governing the dynamics

of the highly viscous core and annulus to determine the band of unstable wavenumbers
for a given set of parameters. The results of this section will also be used in order
to validate the numerical results near the onset of the instability and aid in our
interpretation.

3.1. Highly viscous core

We investigate the linear stability characteristics of the governing equations (2.27)–
(2.29) (after scaling Re out) that govern the initial dynamics of a highly viscous fluid
core surrounded by a much less viscous fluid annulus. The ratio of undisturbed outer
to inner interface positions is denoted by α. We insert the following decomposition
into these equations

(S1, S2, w2) = (α, 1, 0) + (S̃1, S̃2, w̃2), (3.1)

where the quantities with tildes correspond to infinitesimal perturbation. Subsequent
linearization of (2.27) and (2.29) then yields

S̃1t
= ũ1|α, S̃2t

= − 1
2
w̃2z

, (3.2)

w̃2t
= 3w̃2zz

+
(
S̃2z

+ ε2S̃2zzz

)
+ γ

(
S̃1z

+ ε2α2S̃1zzz

)
, (3.3)

in which ũ1 is given by

ũ1|α = − 1
2
αw̃2z

− γA

α2

(
S̃1zz

+ ε2α2S̃1zzzz

)
. (3.4)

Here, A ≡ [α − (3α3/4) − (1/4α) + α3 lnα]/(4M). Substitution of a normal mode
expansion into (3.2) and (3.3) of the form

(S̃1, S̃2, w̃) = (Ŝ1, Ŝ2, ŵ)eikzeλt , (3.5)
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in which λ and k represent the complex perturbation growth rate and real wave-
number, respectively, leads to the following characteristic equation for λ

[2λ(λ + 3k2) − k2(1 − ε2k2)]

(
λ − γA

α2
k2[1 − ε2α2k2]

)
= λαγ k2(1 − ε2α2k2). (3.6)

This equation admits cutoff modes, which are given by kc = 1/ε and kc = 1/(εα); these
have physical interpretations as the two interfaces can each release energy via the
Rayleigh mechanism and these cutoffs emerge from this.

In the limit of small k, we find that λ can be approximated by either λ ∼ λ1k or
λ ∼ λ2k

2:

λ ∼ ±
(

1 + αγ

2

)1/2

k, (3.7)

λ ∼ γA

α2 (1 + αγ )
k2. (3.8)

These small k results are consistent with the equivalent limit in the full linear stability
problem of a viscous compound thread studied by Chauhan et al. (2000), and in
particular their long-wave limit expressions, (23) and (24), for the growth rates of the
stretching and squeezing modes, respectively. The former growth rates are identical
to (3.7) when the density ratio d of Chauhan et al. (2000) is set to zero, and the
squeezing growth rate (24) is identical to (3.8) on setting m ∼ ε2 and expressing it in
terms of our non-dimensionalization.

In order to determine whether any potentially unstable modes correspond to
‘stretching’ or ‘squeezing’ modes, which evolve in-phase or out-of-phase, respectively,
we form the ratio of Ŝ1 to Ŝ2:

Ŝ1

Ŝ2

=
α3

λα2 − γAk2(1 − ε2α2k2)

1

λ
. (3.9)

Stretching and squeezing modes correspond to positive and negative values of Ŝ1/Ŝ2,
respectively. In the small k limit and assuming that λ ∼ λ1k, (3.9) becomes

Ŝ1

Ŝ2

∼ 2α

k2(1 + αγ )
> 0. (3.10)

Inspection of these equations suggests that the mode associated with the asymptotic
behaviour given by (3.7) corresponds to a stretching mode. Assuming that λ ∼ λ2k

2,
(3.9) becomes

Ŝ1

Ŝ2

∼ −α4(1 + αγ )2

A2γ 3k4
< 0, (3.11)

from which it is evident that this mode corresponds to a squeezing mode. The ratio
of the two modes in the small k limit is given by

λ1k

λ2k2
∼ α2(1 + αγ )3/2

21/2γAk
, (3.12)

which indicates that the stretching mode dominates in this limit. Careful inspection
of this equation further reveals that this ratio scales as α1/2/ ln α for α � 1 and
diverges as α → 1, implying that the stretching mode remains dominant for both
small and large α values. Moreover, this ratio scales as γ 1/2 and γ −1 for large and
small γ , implying that the stretching mode is also dominant over the squeezing mode
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Figure 2. Effect of α on the linear stability characteristics when the core is more viscous than
the annulus. Dispersion curves with α = 1.5 and 5, shown in (a) and (b), respectively, M = γ = 1
and ε = 0.05 showing two modes: a stretching mode (dotted line), which is dominant over
all k values, a squeezing mode (dashed line), which is unstable over 0 � k � 1/(εα). Another
squeezing mode, not shown, is stable for all k. The wavenumber of the most dangerous mode
and the associated maximal growth rates are shown in (c) and (d), respectively, for the same
parameter values as in (a) and (b).

in the limit of small k for both small and large γ . Furthermore, since A > 0 for
α > 1, then in the range 0 � k � 1/(αε) an unstable mode with λ > 0 is a stretching
mode if λ > (γAk2)(1 − ε2α2k2)/α2, otherwise it is a squeezing mode. In the range
(1/αε) < k < 1/ε, γAk2(1 − ε2α2k2) < 0. Thus if λ > 0, then the associated mode is a
stretching mode.

Typical dispersion curves are shown in figure 2. Inspection of figures 2(a) and
2(b) reveals that there exist three modes: a stretching mode (dotted line), which is
dominant over all k values and unstable over 0 � k � 1/ε; a squeezing mode (dashed
line), which is unstable over 0 � k � 1/(εα); and another squeezing mode (not shown)
stable for all k. These dispersion curves are single-humped and have a well-defined
most dangerous mode at an intermediate value of k, kmax , for which λ is λmax . Although
the band of unstable wavenumbers of the stretching mode, 0 < k < kc = 1/ε, remains
unaltered, the analogous band for the squeezing mode, 0 � k � 1/(εα) becomes
narrower; the growth rate associated with the stretching mode increases and so it
increases in dominance with increasing α, which corresponds to a relative decrease in
the thickness of the core.

From figures 2(c) and 2(d), it is clear that there exists an intermediate value of α

which maximizes the value of the wavenumber associated with the most dangerous
mode kmax of the stretching mode as well as the maximal growth rates of both modes,
λmax , although λmax associated with the stretching mode appears to be more sensitive
to variations in α than the squeezing mode. Thus for α values larger or smaller than
approximately α ≈ 1.5 for the parameters used to generate figure 2, we expect to see
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Figure 3. Effect of γ on the linear stability characteristics when the core is more viscous
than the annulus. Dispersion curves generated with γ = 0.5 and 2 are shown in (a) and (b),
respectively, α = 1.5, M = 1 and ε = 0.05, showing the same two modes as those shown in
figure 2. The wavenumber of the most dangerous mode and the associated growth rates are
shown in (c) and (d), respectively for the same parameters as in (a) and (b).

increasingly larger structures. These results may appear to be somewhat unexpected
since one would have anticipated that an increase in α, or a reduction in the relative
thickness of the highly viscous core should result in a sufficient reduction in viscous
dissipation so as to increase the magnitude of both kmax and λmax monotonically.
These results, however, can be explained by recalling first that r was scaled on R, the
radius of the core, which implies that the pressure (viscous resistance) associated with
the outer interface decreases (increases) with α. In the case of the squeezing mode, the
flow is increasingly driven by the inner interface with increasing α, thus the maximal
growth rate becomes essentially independent of α for sufficiently large α values. The
decrease in kmax with α may be attributed to the increase in relative significance of
the resistance to extensional flow within the core to the resistance to lubrication flow
in the annular region.

We have also investigated the effect of varying γ , the surface tension ratio, on the
linear stability characteristics of the threads, which is shown in figure 3. As shown in
figures 3(a) and 3(b), increasing γ increases the relative dominance of the stretching
mode over the squeezing mode, while leaving the wavenumbers associated with the
cutoff and most dangerous modes unaltered for γ > 2. This is confirmed upon
inspection of figures 3(c) and 3(d) which show the effect of varying γ on kmax and
λmax , respectively. Figure 3(d) indicates that increasing the relative magnitude of the
outer interfacial tension has a particularly destabilizing influence on the stretching
mode, leaving the squeezing mode comparatively unchanged. Thus, we may tentatively
conclude that the presence of surfactant at the inner interface, which lowers the mean
value of the interfacial tension there, will lead to more rapid breakup and may not
necessarily alter the size of the structures formed. This prediction, however, does not
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take into account the presence of surfactant-induced Marangoni stresses, which act
to rigidify the interface and, depending on its concentration and its ‘strength’ may
drastically alter the transient dynamics (paper I; Craster et al. 2002). Note also that
variation of either α or γ does not result in cross-over of the λmax curves of the two
modes, implying that one cannot enforce the dominant mode via simple variation of
these parameters in the linear regime.

Finally, the asymptotic formula for the growth rate in the small m and l limits is
given by (see paper I)

λ ∼ 1
2
(−3k2 ±

√
9k4 + 2(1 + αγ − ε2(α3γ + 1)k2)), (3.13)

which agrees with that obtained from (3.6) in the limit M → ∞.
Thus the results presented here indicate that, in contrast to the work presented

in paper I, there exist two unstable modes rather than one and that the stretching
mode is dominant over the squeezing mode for all relevant parameter values; this is
in agreement with the results of Chauhan et al. (2000b) who find that the stretching
mode is the most dominant for all parameter values considered in their extensive
study. Hence, despite the fact that the predictions of linear theory are only valid near
onset, we may expect the stretching mode to persist and the two interfaces to grow
in phase in the nonlinear regime. In order to quantify this linear result, we solve the
nonlinear evolution starting with small-amplitude initial conditions, thus allowing the
system to select the most unstable mode and evolve it into the nonlinear regime and
possibly breakup.

3.2. Highly viscous annulus

Here, we follow a similar approach to that employed in the viscous core case. We
linearize (2.64), (2.68) and (2.70) (after scaling Re out) using the following normal
mode expansion:

(S1, S2, w1, p2) = (α, 1, 0, 1 + γ /α) + (Ŝ1, Ŝ2, ŵ, p̂)eikzeλt , (3.14)

which gives rise to the following equations for the disturbance quantities:

λŜ1 + 1
2
iαkŵ = 0, (3.15)

λŜ2 +
M

2

(
i

M
kŵ +

k2

8
p̂

)
= 0, (3.16)

(α2 − 1)(λ + 3k2)ŵ − ikγ (1 − ε2α2k2)Ŝ1 − ik(1 − ε2k2)Ŝ2 = 0, (3.17)(
1 +

k2M

8α2
[α2 − 1]

)
p̂ +

γ

α2
(1 − ε2α2k2)Ŝ1 + (1 − ε2k2)Ŝ2 = 0. (3.18)

Manipulation of (3.15)–(3.18) yields the following characteristic equation for λ:

(α2 − 1)(λ + 3k2) − k2αγ

2λ
(1 − ε2α2k2)

− Mk2

2λ
(1 − ε2k2)


 1

M
+

k2

8




γ (1 − ε2α2k2)

α
+ (1 − ε2k2)

1 +

(
B − M

16λ
(1 − ε2k2)

)
k2





 = 0, (3.19)

in which B = (α2 − 1)M/(8α2). This equation also admits cutoff modes, kc, given by
kc = 1/ε and kc = 1/(εα).
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The ratio of Ŝ2 to Ŝ1 is given by

Ŝ2

Ŝ1

=
1

α
+

Mk2[(1 − ε2k2) + γ (1 − ε2α2k2)/α]

16αλ(1 + k2[B − M(1 − ε2k2)/16λ])
. (3.20)

In the limit of small k, λ can, once again, be approximated by λ ∼ λ1k or λ ∼ λ2k
2,

where λ1 and λ2 are expressed by

λ1 = ±
(

αγ + 1

2(α2 − 1)

)1/2

, (3.21)

λ2 =
γM(α2 − 1)

16α(αγ + 1)
. (3.22)

Thus for k � 1 and λ = λ1k, (3.20) becomes

Ŝ2

Ŝ1

∼ 1

α
, (3.23)

indicating that this mode corresponds to a stretching mode. For λ = λ2k
2, (3.20)

becomes

Ŝ2

Ŝ1

∼ 1 − α(αγ + 1)

α
, (3.24)

which is negative for all values of α and γ indicating that this is a squeezing mode.
It also proves instructive to examine the ratio of the growth rates associated with

each mode in the small k limit:

λ1k

λ2k2
=

16α

21/2γMk

(
αγ + 1

α2 − 1

)3/2

. (3.25)

This ratio is, as α → ∞, proportional to α−1/2 and diverges in the limit α → 1. This
indicates that the stretching mode is less (more) dominant in the former (latter) limit
for small k. Similarly, this ratio scales as γ 1/2 and γ −1 in the large and small γ limits,
respectively, indicating that the stretching mode always dominates.

In figures 4(a) and 4(b), we show the effect of varying α on the dispersion curves
for the highly viscous annulus case. There exist, once again, three distinct modes:
a stretching mode (dotted line), which is unstable over the range 0 � k � 1/ε and
dominant over all k values, a squeezing mode (dashed line), which is unstable
over 0 � k � 1/(εα) and another squeezing mode (not shown), stable for all k.
The dispersion curves in this case are also single-humped with a well-defined most
dangerous mode associated with an intermediate k value, kmax , for which the growth
is maximal, λmax . In contrast to the highly viscous core case, variation of α in this
case does not give rise to maxima in λmax . As shown in figures 4(a) and 4(b), kmax

rises sharply for both the stretching and squeezing modes as α → 1, as does λmax

of the stretching mode; the latter can be explained upon inspection of (3.21), which
diverges as α approaches unity. Increasing α results in a sharp decrease of kmax and
λmax of the stretching mode, which then saturate beyond a value of α ≈ 2 for this set
of parameter values; in fact, kmax exhibits a very shallow minimum with respect to α

(see figure 4c). The analogous quantities for the squeezing mode, on the other hand,
decrease monotonically with increasing α. Thus it appears that decreasing the relative
thickness of the highly viscous annulus, which effectively decreases the magnitude of
viscous dissipation has a particularly destabilizing influence on the system.



Compound threads with viscosity contrasts 113

0 5 10 15 20 25
–1

0

1

λ

0 5 10 15 20 25
–1

0

1

kk

0 5 10

2

4

6

8

α

kmax λmax

0 5 10

1

2

3

α

(a)

(c)

(b)

(d )

Figure 4. Effect of α on the linear stability characteristics when the core is less viscous
than the annulus. Dispersion curves generated with α = 1.5 and 5 are shown in (a) and (b),
respectively, M = γ =1 and ε = 0.05 showing two modes: a stretching mode (dotted line),
which is dominant over all k values and unstable for 0 � k � 1/ε, a squeezing mode (dash line),
which is unstable over 0 � k � 1/(εα). There is another squeezing mode (not shown) that is
stable for all k. The wavenumber of the most dangerous mode and the associated growth rates
are shown in (c) and (d), respectively, for the same parameters as in (a) and (b).

Variation of γ (see figure 5) has a similar effect on the linear stability of the
highly viscous annulus case as that previously demonstrated for the viscous core case.
In particular, increasing γ increases the relative dominance of the stretching mode,
although in this case kmax and λmax of both modes appear to be sensitive to changes
in γ .

We have also checked that the limiting formula in the limit M → 0 expressed by

λ ∼ −3(α2 − 1)k2 ±
√

[3(α2 − 1)k2]2 + 2(α2 − 1)k2(αγ + 1 − ε2k2[α3γ + 1])

2(α2 − 1)
, (3.26)

is in agreement with the limiting formula for λ in the large m and l limits (see paper I).
The predictions made here are largely similar to those for highly viscous cores: the

stretching mode dominates the squeezing mode and the interfaces will initially grow
in phase. The ultimate interfacial shapes near pinchoff may be complicated and can
only be predicted via numerical simulations of the evolution equations. A discussion
of these simulations is presented in the following section.

4. Numerical simulations
We begin the presentation of the numerical results with a brief description of the

numerical procedure. The evolution equations, (2.27) and (2.29), are solved using a
pseudo-spectral code that uses fast Fourier transform (FFT) methods for the spatial
derivatives (typically 512 modes, doubling or halving the number of modes made
no discernible difference to the computations) and Gear’s method to advance the
solution in time from the prescribed initial conditions. These are chosen to be either
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Figure 5. Effect of γ on the linear stability characteristics when the core is less viscous than
the annulus. Dispersion curves generated with γ = 0.5 and 2 shown in (a) and (b), respectively,
α = 1.5, M = 1 and ε = 0.05, showing the same two modes as those shown in figure 4. The
wavenumber of the most dangerous mode and the associated growth rates are shown in
(c) and (d), respectively for the same parameters as in (a) and (b).

random perturbations of initially small amplitude, taken from a uniform distribution
on 10−5[−1, 1], or the dominant mode from linear theory. In the latter case, we take
an initial condition from (3.1), (3.5) with Ŝ1 = 10−4 (the other perturbations are found
from this) and λ(k) from (3.6). This has the advantage that we can track linear theory
and verify the predictions of the numerical procedure; clearly since the code is Fourier
spectral in origin, periodic boundary conditions are applied.

The length of the computational domain is chosen to be from −10 to 10 for random
initial conditions and 4π/k for those started with the most dangerous mode (twice
the wavelength of the most dangerous mode to allow nonlinear evolution to longer
structures if the equations so desire). The computations are halted immediately before
the dimensionless distance between S1 and S2 is of order 10−4, or when S2 ∼ O(10−4).

4.1. Highly viscous core

The results of our simulations for typical parameter values are shown in figure 6.
Here we show the effect of varying the initial thickness ratio on the dynamics for
α = 1.5, 5, 10 and γ = 1. The compound thread evolution is initiated as described
above; the results associated with the pseudo-random initial conditions are shown in
the left-hand panels, while those starting from the most dangerous mode are depicted
in the right-hand panels.

In both cases, the thread evolves under the action of capillarity, which acts to
amplify the initially small disturbances. The highly viscous core forms a varicose,
gently varying, interior surrounded by a rapidly varying outer less viscous annulus.
Clearly, the less viscous annulus is more susceptible to deformations than the core.
The behaviour shown in figure 6 is markedly different from that presented in paper
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Figure 6. The effect of varying α on the evolution of the threads when the core is more
viscous than the annulus (shaded region) with γ = M = 1 and ε = 0.05. The left-hand
panels show profiles of S1 and S2 at t = 15.7, 4.76, 3.6 for α = 1.5, 5 and 10, respectively.
The evolution is initiated by random disturbances taken from a uniform distribution on
[−1, 1] × 10−5 introduced to the outer interface. The right-hand panels show analogous
profiles for simulations initiated by solutions to the linearized equations associated with the
most dangerous stretching mode, which corresponds approximately to k = 9, 2.8 and 1.4 for
(a) α = 1.5, (b) 5 and (c) 10 (see figure 2), respectively, imposed upon the outer interface; the
amplitude of the initial disturbance is 10−5. Here, the times are t = 19.7, 7.1, 4.7 for α = 1.5, 5
and 10, respectively.

I, in which both interfaces moved synchronously owing to the radial independence
of the axial velocity component. The computations continue until the outer and
inner interfaces are separated by a distance of O(10−4); this is referred to below
as ‘pinch-off’ or ‘breakup’ although it should be noted that this does not mean
that the interfaces eventually touch. This appears to take place before the radius of
the viscous core itself has had an opportunity to achieve similar values for all the
parameters examined in the present work. It should also be pointed out, however,
that the dynamics in the present case are markedly different from that of a single
thread or of a compound thread wherein the core breaks up first. In the latter cases,
the curvature and axial velocities diverge as breakup is approached. In the present
case, the velocities remain finite (as shown in figure 9), and the interfaces approach
one another via a fluid ‘drainage’ mechanism rather than a catastrophic event. Note
that had intermolecular forces been included in our model, then finite-time pinch-off
would have occurred.
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Figure 7. Multiple satellite formation when the core is more viscous than the annulus with
α = 20, initiated by the most dangerous mode: kmax = 0.699 with remaining parameters the
same as figure 6: tf = 4.8.

The trend observed in figure 6 is that for small α we have a thin outer, less viscous,
annulus that rapidly forms small isolated regions separated by a very thin film.
Increasing α leads to regular periodic disturbances with large ‘rings’ of fluid separated
by smaller ones. That is, the evolution of the annulus is accompanied by multiple
‘satellite’ formation for sufficiently large α (see figure 7). These smaller intermediate
fluid regions eventually split further to generate multiple satellites, although this may
lie outside the limits of applicability of the current theory, which is strictly valid
for εα � 1. There is also a minimal satellite size as predicted by our linear stability
analysis, so we have qualitative agreement with the predictions of linear theory.

It is interesting to contrast the evolution of the thread starting from different
initial conditions. Except for the smallest values of α considered, the final profiles
associated with the initially pseudo-random perturbations appear to be qualitatively
and quantitatively similar to those associated with the most dangerous linear forcing
with minor differences occurring in the isolated smaller droplets regions. This is not
surprising since, as shown in figure 8(a), rapid organization occurs of the initial
pseudo-random disturbances into the most dangerous mode for α = 5, γ = M = 1
and ε = 0.05 that corresponds to kmax = 2.8; thus memory of the initial conditions is
quickly erased. Figure 8(b) shows a comparison of the prediction of linear theory and
that of the numerical computations. Inspection reveals excellent agreement at early
times prior to the onset of nonlinearities and inspires confidence in the performance
of the numerical procedure. For relatively large values of α, the initial evolution is as
predicted by linear theory: in-phase interface evolution. Nonlinearity then gives rise
to satellite formation and the interfaces can then move out-of-phase; cf. figure 6(c).
Thus linear theory cannot be entrusted to predict the ultimate fate of the compound
thread.

For smaller α values, it appears that the time to ‘pinch-off’ occurs less rapidly
starting from linear forcing; the growth rates for the most dominant mode decrease
with decreasing α. This allows both the core and the annular region to deform,
promoting the possibility of thread ‘breakup’ into compound drops for sufficiently
small α, rather than annular drops on the surface of the highly viscous core. This
behaviour, however, was not observed for the smallest α values used when γ = 1;
‘breakup’ in the annular regime occurred first.
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Figure 8. Comparisons with linear theory for the highly viscous annular case with α = 5:
(a) shows the early-time evolution of profiles initiated with pseudo-random disturbances with
the initial profile shown displaced by 4 × 10−5 and the first eight profiles separated in time by
8 × 10−3 showing evolution towards the most unstable stretching mode as predicted by linear
theory. This most unstable mode is shown as the dot-dashed line with amplitude chosen for
aesthetic comparison. (b) shows the growth measure calculated from the numerical simulations
(solid line) versus the growth rate from linear theory (dotted line) (equal to λmax = 4.85 in this
case). The rest of the parameters are γ = M = 1, kmax = 2.8 and ε = 0.05.
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Figure 9. (a) The variation of interface positions with γ for α = 5, initiated by the most
dangerous mode: kmax = 2.77, 2.78 and 2.79 for γ = 1/2, 1, 2 with the remaining parameters
the same as figure 6: tf = 12.6, 7.1 and 3.8. (b) shows the axial velocity w1 for the α = 10
computation of figure 6 initiated by the most dangerous mode. The dotted lines show the
interface positions (divided by 50) for reference.

Variation with γ has a relatively weak effect upon the satellite size, but can
dramatically affect the time to ‘pinch-off’; this can be observed from the increasing
growth rates with γ from linear theory. Figure 9 shows some typical profiles when
α = 5. Physically, as we decrease γ , we demote the influence of the outer less viscous
fluid and the flow becomes dominated by the highly viscous core. Indeed, as γ → 0,
we tend towards the conventional single jet (cf. § 2.1.2) and pinch-off then occurs
in the central highly viscous core. We turn our attention now to the case of highly
viscous annuli.
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Figure 10. Comparisons with linear theory when the core is less viscous than the annulus
with α = 2: (a) shows the early-time evolution of profiles initiated with pseudo-random
disturbances. Here, four profiles are shown at t = 8, 9, 10, 11 illustrating the evolution towards
the most unstable stretching mode as predicted by linear theory, shown as the dot-dashed
line with amplitude chosen for aesthetic comparison. (b) shows the growth measure calculated
from the numerical simulations (solid line) versus the growth rate from linear theory (dotted
line) (equal to λmax = 0.55 in this case). The rest of the parameter values are γ = M = 1,
kmax = 6.83, ε = 0.05.

4.2. Highly viscous annulus

Here, we describe the results of the simulations for the highly viscous annulus case. The
same numerical scheme briefly described in § 4 is again used in this case. In figure 10,
we show a comparison of the predictions of linear theory with numerical solutions
starting from initial pseudo-random forcing. In figure 10(a), rapid organization of the
random perturbations occurs into coherent structures, which quickly begin to resemble
the most dangerous linear mode, which is a stretching mode. From figure 10(b), it
becomes clear that the numerical solution starting from this mode is in excellent
agreement with the linear theory predictions, and that the interfaces move in-phase,
prior to the onset of nonlinearities. This inspires further confidence in the predictions
of the numerical procedure used in this study.

Typical numerical simulations are shown in figure 11, in which we illustrate the
effect of increasing α on S1 and S2 with γ = 1 starting from pseudo-random initial
forcing. For small α values, the core assumes a ‘bamboo-shoot’ type of structure
and the thin annulus ‘pinches off’ first, in spite of it being more viscous than the
core region. This is because the rapid deformation of the core causes the relatively
thick regions of the core to interact with the annulus, which exhibits a much slower
response. These interactions give rise to ‘pinch-off’ of the annulus, which is, once again,
a short-hand interpretation of S1 − S2 ∼ O(10−4). We also remark that out-of-phase
interface motion contradicts the predictions of the linear stability analysis, which
further demonstrates the short-comings of linear theory in predicting the ultimate
fate of a compound thread in the nonlinear regime.

In figure 12, we show analogous plots to those shown in figure 11, but here the
solutions were generated starting from linear mode forcing. In this case, the profiles
appear to be similar, but much more regular with the core undergoing ‘breakup’ into
droplets, exhibiting a ‘string of pearls’ type of structure, particularly for relatively
large α values. The viscous annulus, on the other hand, undergoes relatively mild
deformations for these α values.
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Figure 11. The effect of varying α on the evolution of the threads when the core is less
viscous than the annulus (shaded region) with γ = M = 1 and ε = 0.05. Here, profiles of S1

and S2 are presented at (a) t = 7.4, (b) 14.5, (c) 23 and (d) 27.4 for α = 1.25, 1.5, 2 and 2.5,
respectively. The evolution is initiated by pseudo-random disturbances taken from a uniform
distribution on [−1, 1] × 10−4 introduced to the outer interface.

Thus increasing the relative thickness of the highly viscous annulus progressively
increases the likelihood of ‘breakup’ of the less viscous core; an example of this
situation is shown in figure 11(d). However, in the α = 2.5 case, wherein core breakup
occurs, the curvature of the inner interface diverges. This is most easily seen by
inspecting the pressure in the core, p2 (see figure 13) which clearly diverges as
S2 → 0 (see (2.68)) which occurs in the α = 2.5 case. This is in stark contrast to the
behaviour at smaller α values where both interfaces simply collide. Note also that the
axial velocities remain finite in the highly viscous annulus case for all the α values
examined and that pinch-off occurs via a ‘drainage’ mechanism rather than through
the divergence of the axial velocity.

We have also examined the effect of varying γ on the dynamics; this is shown in
figure 14 for α = 1.5, and again has a relatively weak effect upon the satellite size. The
satellite sizes do lengthen slightly with increasing γ . The time to ‘pinch-off’ decreases
as γ increases; this can be observed from the increasing growth rates with γ from
linear theory.

5. Concluding remarks
In this paper, we have examined the evolution of compound threads, which are

composed of fluids having sharp viscosity (and density) contrasts. Two particular
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Figure 12. The effect of varying α on the evolution of the threads having a highly viscous
annulus (shaded region) with γ = M = 1 and ε = 0.05. Here, profiles of S1 and S2 are presented
at (a) t = 5, (b) 12.1, (c) 15.1 and (d) 16.6 for α = 1.25, 1.5, 2 and 2.5, respectively. The evolution
is initiated by solutions to the linearized equations associated with the most dangerous mode,
which corresponds approximately to k = 7.46, 7.02, 6.83 and 6.82 for α = 1.25, 1.5, 2 and
2.5 (see figure 4), respectively, imposed upon the outer interface; the amplitude of the initial
disturbance is 10−4.

cases were examined: a highly viscous core surrounded by a much less viscous
annular fluid, and a highly viscous annulus, which encloses a much less viscous core.
The more viscous fluid was also assumed to be much denser than the other fluid.
This allowed the retention of inertial contributions in the more viscous phase, which
may not be physically realizable but, nevertheless, allowed the recovery of many of
the equations governing the evolution of jets and threads published in the literature.
In fact, the model systems of equations deduced here reduce, in appropriate limits,
to several special cases, notably to the equations of Hammond (1983), Eggers (1993)
and Sierou & Lister (2003).

A long-wave theory valid for slender threads was used to derive evolution equations
for the interfacial locations and axial velocities of the more viscous regions; in the
highly viscous annulus case, an equation for the pressure in this region was also solved.
The approach adopted in this paper is similar to that employed by paper I, wherein
the nonlinear stability of compound threads was also examined. The assumption
underlying their analysis, however, was that the viscosity ratio was of order unity,
which rendered the axial component of the velocity field radially independent. This
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Figure 13. The pressure and velocity profiles for α = 1.25 (solid) and α = 2.5 (dotted) for
the profiles shown in figure 12. (c) The interface positions.
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Figure 14. The variation of S1, S2 with γ for α = 1.5, initiated by the most dangerous mode:
kmax = 7.31, 7.02, 6.42 and 5 for γ = 1/2, 1, 2 and 5 with remaining parameters the same as
figure 11: tf = 14.3, 12.1, 11 and 9.1.

resulted in simultaneous breakup of the core and annular regions regardless of their
initial thickness ratio, α.

The linear stability characteristics of the threads were then analysed for the two
chosen cases of a highly viscous core and annulus. In both cases, two unstable modes
were identified: a stretching and a squeezing mode, which correspond to interfacial
motion in- and out-of-phase, respectively. In all cases examined, the stretching mode
was found to be the dominant mode of linear growth, in agreement with previous
work on compound jet stability (Chauhan et al. 1996, 2000). We have also found that
decreasing the relative thickness of the more viscous fluid, and/or increasing the ratio
of interfacial tensions of the outer to inner fluids, γ , leads to more unstable situations.
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The stability of the threads in the nonlinear regime was then investigated via tran-
sient numerical solutions of the evolution equations for a wide range of parameters.
A numerical procedure based on spectral discretization of spatial derivatives and
Gear’s method in time was employed to carry out the computations. Solutions were
obtained starting from either pseudo-random perturbations or the most dangerous
linear mode; excellent agreement with the predictions of linear theory was obtained
in each case.

The numerical results show that in the highly viscous core case, the annular region
undergoes breakup into either small droplets of nearly uniform size, or larger drops
separated by droplets of smaller size depending on the magnitude of α; multiple
satellites were also observed for large α values. It is notable that, in the nonlinear
regime, the interfaces can move out-of-phase and this is contrary to the prediction
that we obtain from linear theory. In the highly viscous annulus case, breakup of
either the annular or core regions is possible for small and large α values, respectively.
In the former limit, the thread assumes a ‘bamboo-shoot’ type of shape, while in the
latter, the core region exhibits a ‘string-of-pearls’ shape. Increasing γ was found to
decrease the time to pinchoff; the satellite size, however, was found to be relatively
insensitive to γ variations.

D. T. P. thanks the National Science Foundation for support under grant DMS-
0072228. We are grateful to the referees for several useful and interesting suggestions.
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